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VANISHING VISCOSITY APPROACH TO
THE COMPRESSIBLE EULER EQUATIONS
FOR TRANSONIC NOZZLE AND SPHERICALLY SYMMETRIC FLOWS

GUI-QIANG G. CHEN AND MATTHEW R. I. SCHRECKER

ABSTRACT. We are concerned with globally defined entropy solutions to the Euler equations
for compressible fluid flows in transonic nozzles with general cross-sectional areas. Such nozzles
include the de Laval nozzles and other more general nozzles whose cross-sectional area functions
are allowed at the nozzle ends to be either zero (closed ends) or infinity (unbounded ends). To
achieve this, in this paper, we develop a vanishing viscosity method to construct globally defined
approximate solutions and then establish essential uniform estimates in weighted LP norms for
the whole range of physical adiabatic exponents v € (1, 00), so that the viscosity approximate
solutions satisfy the general LP compensated compactness framework. The viscosity method is
designed to incorporate artificial viscosity terms with the natural Dirichlet boundary conditions
to ensure the uniform estimates. Then such estimates lead to both the convergence of the
approximate solutions and the existence theory of globally defined finite-energy entropy solutions
to the Euler equations for transonic flows that may have different end-states in the class of nozzles
with general cross-sectional areas for all v € (1,00). The approach and techniques developed
here apply to other problems with similar difficulties. In particular, we successfully apply them
to construct globally defined spherically symmetric entropy solutions to the Euler equations for
all v € (1, 00).

1. INTRODUCTION

We are concerned with globally defined entropy solutions to the Euler equations for transonic
nozzle flows with general cross-sectional areas and related compressible flows of geometric structure
including spherically symmetric flows. Then the Euler equations may be reduced to the following
one-dimensional Euler system with geometric terms:

Pt + myg + A/((:))m =0,

(1.1)

for (t,z) € Ry x R with Ry = [0, 00), where p : R — Ry is the density of the fluid, u = Z2:R-R
is the velocity, and A = A(x) is a given C2function A : R — R,. The equation of state is

assumed to be that of a polytropic gas:

plp) =rp",  y>1,

(y=1)
4y

where k := : by scaling (without loss of generality).

We first focus on the Cauchy problem for system (1.1):
(p,m)|t=0 = (po,m0), (1.2)
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where the initial data (pg, mo)(x) have end-point states (p+, my) at & = £oo, for constants pi. > 0
and my € R. The end-states are allowed to be different, i.e., (p4+,my) # (p—, m_), in general.
The Cauchy problem (1.1)—(1.2) models transonic nozzle flow through a variable-area duct,
where A(x) describes the cross-sectional area of the nozzle at point x € R (¢f. [5, 8, 10, 12,
19, 20, 21, 28]). The existence of global solutions of this problem was first obtained in [19] by
incorporating the steady-state building blocks with the Glimm scheme [11], provided that the
initial data have small total variation and are bounded away from both sonic and vacuum states.
Some numerical methods were introduced to compute transient gas flows in a de Laval nozzle in
[10, 12]. A mathematical analysis of the qualitative behavior of nonlinear waves for nozzle flow was
given in [21]. On the other hand, the general transonic nozzle problem, so that the initial data are
allowed to be arbitrarily large with different end-states and only relative finite-energy and that the
cross-sectional areas are allowed to tend to either zero (closed ends) or infinity (unbounded ends) as
& — £00, has not been understood yet, including the existence theory for all v € (1, 00), since the
solution may blow up at the closed ends. For the general case, the corresponding cross-sectional

area function A(z) > 0 is a C?—function that requires only either

A/
17 ey 1A (—o0.0) < 00 (1.3)
or
Al ,
HZHLoo(]R) +[|A HLl(O,oo) < o0. (1.4)

In particular, this general class of nozzles includes the de Laval nozzles with closed ends. In
this paper, we first establish the existence of globally defined entropy solutions to the Euler
equations (1.1) for compressible fluid flows in transonic nozzles with general cross-sectional areas
satisfying (1.3) or (1.4). To achieve this, we first develop a viscosity method to construct globally
defined approximate solutions and then establish several essential uniform estimates for the whole
interval of adiabatic exponents v € (1,00), so that the viscosity approximate solutions satisfy
the general LP compensated compactness framework established in Chen-Perepelitsa [3] (also see
[2] and the references cited therein). Our viscosity method is carefully designed to incorporate
artificial viscosity terms with the Dirichlet boundary conditions naturally to ensure the uniform
estimates for all v € (1,00). Then these uniform estimates lead to both the convergence of the
approximate solutions and the existence theory of globally defined entropy solutions of problem
(1.1)—(1.2) for initial data of relative finite-energy for all v € (1,00), provided that the cross-
sectional area function A(x) satisfies (1.3) or (1.4).

The case that A : Ry — Ry with A(z) = w2 ',w, > 0, for x € R4 corresponds to
the equations for the isentropic Euler equations with spherical symmetry, which does not satisfy
condition (1.3) or (1.4). The study of spherically symmetric solutions dates back to the 1950s,
and is motivated by many important physical problems such as flow in a jet engine inlet manifold
and stellar dynamics including gaseous stars and supernovae formation (c¢f. [5, 13, 16, 25, 26, 28]).
The central feature is the strengthening of waves as they move radially inward, especially near the
origin. Various evidence indicates that spherically symmetric solutions of the compressible Euler
equations may blow up near the origin at a certain time in some situations. A longstanding open,
fundamental problem is whether a concentration could be formed at the origin, that is, the density
becomes a delta measure at the origin, especially when a focusing spherical shock is moving inward

towards the origin (¢f. [5, 25, 28]). The first existence result for global entropy solutions including
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the origin was established in Chen [1] for a class of L> Cauchy data of arbitrarily large amplitude,
which model outgoing blast waves and large-time asymptotic solutions; some further extensions of
such Cauchy initial data for global entropy solutions in L> can be found in Huang-Li-Yuan [14] and
the references cited therein. Also see Slemrod [26] for the resolution of the spherical piston problem
for isentropic gas dynamics via a self-similar viscous limit, and LeFloch-Westdickenberg [15] for a
compactness framework to ensure the strong compactness of spherically symmetric approximate
solutions with uniform finite-energy norms for the case 1 < v < 2. In Chen-Perepelitsa [4], under
the assumption that v € (1,3], the existence of globally defined spherically symmetric entropy
solutions was established via the vanishing viscosity approximation. As a direct application of
the approach and techniques developed in this paper for the general transonic nozzle problem, we
successfully remove the restriction that v € (1, 3] and establish the existence of globally defined
finite-energy entropy solutions for the general case of large initial data for the full range v > 1,
including the unsolved case v > 3. This implies that there exist globally defined spherically
symmetric solutions with large initial data of finite-energy for the whole range v € (1, 00), which
do not form concentrations at the origin.

The structure of the paper is as follows: In §2, we discuss the properties of weak entropy
functions of system (1.1), introduce the definition of entropy solutions, and present the main
theorems, Theorems 2.1-2.2.

In §3-85, we develop the viscosity method to construct the afore-mentioned approximate solu-
tions and demonstrate their convergence to entropy solutions of the Cauchy problem (1.1)—(1.2),

first under the following assumptions on the cross-sectional area function A:

0< Ap < A(z) < 4y < o0, (1.5)
Allc2®) + 1A |21 (m) < A2 < 0. (1.6)

The construction of the approximate solutions in §3 employs the standard theory of quasilinear
parabolic systems as detailed in [18]. In §4, we derive uniform estimates, independent of the
viscosity coefficient e, on the approximate solutions, so that they satisfy the requirements of the
general LP compensated compactness framework in [3] to pass to the limit as ¢ — 0, and hence
deduce, in §5, the existence of globally defined entropy solutions of the Cauchy problem (1.1)-
(1.2) with general large initial data of different end-states and relative finite-energy in the sense
of Theorem 2.1.

In §6, we describe how the additional assumptions on A(z) in (1.5)—(1.6) can be removed to
obtain the expected results in Theorem 2.1 for the general case (1.3) or (1.4).

Finally, in §7, we show how the approach and techniques developed in §3-§6 can be extended to
the general setting of spherically symmetric solutions to the Euler equations, leading to our second
main theorem, Theorem 2.2, for the whole range of adiabatic exponents v € (1,00), especially

including the unsolved case: v > 3.

2. ENTROPY SOLUTIONS AND MAIN THEOREMS

In this section, we discuss the properties of weak entropy functions of system (1.1), introduce

the definition of entropy solutions, and present the main theorems, Theorems 2.1-2.2.
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2.1. Entropy. An entropy-entropy flux pair (or entropy pair, for simplicity) is a pair of functions
(n,q) : R4 x R — R? such that

Vq(pam) = Vﬂ(ﬂv m)v (mTQ +p(p)> ) (21)

where V is the gradient with respect to the conservative variables (p,m). For example, the

mechanical energy and its flux form an entropy pair:

N 1m? K

n"(p,m) = 57 o 1p’ya (2.2)
* 1m? Ky y—1

q (pam):§F+771mp . (2.3)

We also use the well-known fact (¢f. [7, 17]) that any weak entropy pair (that is, the corre-

sponding entropy vanishes at p = 0) for system (1.1) can be expressed as

/ v+ gs)1 - ST g (2.4)

3—v
aolpom) =p [ (00 4 )t T s, (2.5)
where 0 = 7771, and ¢ : R — R is said to be a generator of the entropy pair (1y, ¢y)-

2.2. Entropy Solutions. Now we introduce the definition of entropy solutions of the Cauchy
problem (1.1)—(1.2).

Definition 2.1. An entropy solution of the Cauchy problem (1.1)—(1.2) is a pair (p, m) : R3 — R?
such that

(i) For any ¢ € C2°(R2),
/ (06 + mabs) Ax) du dt + / po()6(0, 2)A(z) dir =0, (2.6)
R2 R

m? Al
/ , (161 0 9902 + O ) dodr + [ mol@)o00.2)4@ de = 0: 27

(ii) For any convex 1 (s), with sub-quadratic growth at infinity, generating the entropy pair
(n?,q%),
2
m
(0 A@)), + (¢" A()) , + A'(z) (mny + 777,@ -q¥) <0 (2.8)
in the sense of distributions.

In order to define the energy with respect to the end-states (p+,m+) = (p+,prus), where
Uy = P_:t if px # 0, or uyx = 0 otherwise, we follow [3] in defining smooth, monotone functions
(p(x), u(x)) such that, for some Ly > 1,

s Ut ), x > Lo,
Bty =4 0" ’ (2.9)

(p,,u,), r < —Lo.
By the Galilean invariance of the system, without loss of generality, we may assume either u_ =0
or uy = 0.

We define the relative mechanical energy with respect to (p(z ), m(x)) = (p(x), p(x)u(x)):

n*(p,m) = n*(p,m) —n*(p,m) — Vn*(p,m) - (p— p,m —m) = —plu —al*+h(p,p) >0, (2.10)
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where Ti(p, 7) = h(p) — h(p) — K'(5)(p — p), and h(p) = 525
Definition 2.2. The relative total mechanical energy for (1.1) with respect to the end-states
(p+,my) through (p,m) is

Elp.m)(t)i= [ T (plt, ), m(t,2)) Alw) do > 0
We say that a pair (p,m) is of relative finite-energy with respect to the end-states (py,m4) if
E[p,m](t) < oo for any ¢ > 0.

2.3. Main Theorems. We now present the two main theorems.

Theorem 2.1 (Transonic Nozzle Solutions). Let the cross-sectional area function A(x) > 0 be
a C?—function satisfying (1.3) or (1.4). Assume that (po,mo) € Li,.(R) with po(z) > 0 is of
relative finite-energy with respect to the prescribed end-states (p+,my). Then there exists a global
finite-energy entropy solution (p, m)(t,x) of the transonic nozzle problem (1.1)—(1.2) in the sense

of Definitions 2.1-2.2 such that

(p,m) € LY (R2) x L, (RY)  forpe[l,y+1) and g € [1,2051), (2.11)

Remark 2.3. Condition (1.3) or (1.4) allows for the nozzles to open up at one end (with an
unbounded cross-sectional area), and to shrink at both ends with rate |z|~ for any o > 0 (closed
ends). In particular, a positive lower bound, or upper bound, of the cross-sectional area function

s not required.

The existence of entropy solutions presented in the above theorem will be established as a
vanishing viscosity limit of appropriately designed approximate solutions. We will therefore first
develop the viscosity method to construct such approximate solutions and then derive the uniform
estimates of the approximate solutions so that they satisfy the requirements of the LP compen-
sated compactness framework in [3]. Moreover, as a consequence of the approach and techniques
developed below, we are able to prove the following result for the spherically symmetric Euler

equations, including the unsolved case: v > 3.
Theorem 2.2. Let (pg, mo) € (L1, .(R+))? be finite-energy initial data such that po(z) > 0 and

E.[po, mo) := / n*(po, mo)z" tdx < oco.
0

Then, for the whole range v € (1,00), there exists a global entropy solution (p,m)(t,x) of the
spherically symmetric Euler equations with A(x) = w,x™ 1, > 0, where w,, is the surface area of

the unit sphere in R™, such that (p,m) € L} (R2)x L] (R%) forp € [1,v+1) andq € [1, 3(,7:31)),

and
E.lp,m](t) ::/ n*(p,m)x" " tdx < F.[po, mo] < oo. (2.12)
0

3. VISCOSITY APPROXIMATE SOLUTIONS

We now develop the viscosity method to construct the viscosity approximate solutions of the
Cauchy problem (1.1)—(1.2) and make some necessary estimates. Throughout this section and
§4-85, we first assume that there exist Ag, A1, A3 > 0 such that condition (1.5)—(1.6) hold for the

cross-sectional area function A(z) for simplicity of presentation.
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For fixed £ > 0, we consider the following approximate equations for (¢,z) € R4 x (a, b):

A (x Al (z
p§ +ms + Si5mE = e(p5, + T05), )
m?)? A’ (z) (m)? A (x ’
m% + (( pa) JFPS(PE))I + A((ac)) ( pz) = E(mi + A((z))ms)za
where
ps(p) = kp? + 6p?, d =0(g) > 0 with §(¢) > 0ase — 0. (3.2)

The introduction of this additional term 6p? into the pressure function prevents cavitation (i.e.,
the formation of a vacuum state) in the approximate solutions when £ > 0. Here a = a(e) and
b = b(e) are chosen such that

a(e) < =Ly, ale) > —o0 ase —0, (3.3)
b(e) > Lo, be) > 00 ase =0 (3.4)

for Lo in (2.9), independent of £. We can take a(e) and b(g) to diverge at the same rate in ¢ — 0,
but this rate is not arbitrary. However, we have the freedom to design the approximating problems
in a convenient manner so that this rate can be chosen carefully in §4-§5.

We pose approximate initial and Dirichlet boundary data:

(p,m)li=0 = (0§, m5)(x), = € (a,b),

(psm)|z=a = (p=,mZ), t>0, (3.5)

(p,m)]o=b = (p3.,m3), t>0,
where p5. > 0, and (p%,m%) — (px,ms) as € — 0. The imposition that the end-states for p are
strictly positive is to prevent the possibility of cavitation. One of the motivations for us to impose
the Dirichlet boundary data for the approximate solutions is to allow for the use of the weak
maximum principle for obtaining the L estimate for the approximate solutions for the whole
range v € (1,00); see Lemma 3.3.

With this carefully designed initial-boundary value problem (3.1)—(3.5), the next goal of this

section is now to establish the existence of globally defined approximate solutions. Throughout
this section, for 8 € (0,1), C**#([a, b)) and C2+8:1+% (Q7) denote the usual Holder and parabolic

Holder spaces on the interval [a, b] and the parabolic cylinder Qr := [0, T] x [a, b], respectively, as
defined in [18].

Theorem 3.1. Fore >0, let (p§, m§) € (C*T°([a, b]))2 be a sequence of functions such that
(i) infa<o<p pf(a) > 0
(i) (p§, m5) satisfies (3.5) and the compatibility conditions at v = a(e) and b(e):

(@), = (@), (AT

P%

b mE)2 r(pE)Y

(iii) [, (—( 2906) + —,(,pfi JA(z) dz < oo;
(iv) (0(g),a(e),b(e)) satisfy (3.2)~(3.4).

Then there exists a unique global solution (p=, m®)(t,x) of problem (3.1)~(3.5) for v € (1,00) such

that (p°,m*®) € (02+571+§(QT))2 with infg, p°(t,z) >0 for all T > 0.

), + A@)ps (p5)e = e(Alx)mg) 5

We assume from now on that a = a(e) and b = b(g) are constants depending on & > 0 such that

(1+ |(AZ/)/|)5|afb| <M, (3.6)
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where M > 0 is a constant, independent of €. For simplicity of presentation, we drop the explicit
e—dependence of all functions in this section, since the results hold for each fixed € > 0. Moreover,
we use the following notation:

hs(p) = pes(p), ea(p)Z/Op pé(j) ds. (3.7)

S

By the theory detailed in [18], in order to establish Theorem 3.1, it suffices to show that, for a

generic C%1(Q7) solution of (3.1), the following a priori bound holds:
1 m
[(p.p v;)HLw(QT) < 00,

where the bound may depend on ¢, T', and the initial-boundary data. Then this implies that a
generic solution of the equations with the prescribed regularity remains in a bounded region, away
from the singularities of the coefficients of the quasilinear parabolic system (3.1). The results in
§5 and Theorem 7.1 in §7 of [18] then lead to the conclusion of Theorem 3.1.

The remainder of this section consists of several energy estimates in order to deduce their
bounds.

Our fundamental energy estimate concerns the control of the relative mechanical energy for
system (3.1). We define a modified entropy pair:

m2 3

* * m /
Ns = % + hs(p), g5 = 27 +mhg(p),

and further modify these to obtain
15 (p,m) =5 (p,m) — 15 (p,m) — Vg5 (p,m) - (p — p,m — m)
1 —
= 5plu—a* +hs(p,p) > 0,

where T3 (p, 7) = ha(p) — hs(p) — 5(2)(p — p)-
Then the total relative mechanical energy for (3.1) with respect to the end-states (py,my)

through (p,m) is
b
Elp,m|(t) := / ni(p(t,z),m(t,z))A(z) dz > 0.

a

Now we obtain

Proposition 3.1. Let

b
Ey = sug/ n; (pg(x), mg(x))A(z) de < oo.
e> a

Then there exists M > 0, independent of €, such that, for all € > 0,

b
1 _ —
sup [ (5ol = + sl ) Alw) do
t€l0,T] Ja

(3.8)
+ 6/ (his’(p)pi + pug + |(

A'(a)
Ax)

)/pu(u - ﬂ)|)A(z) dedt < M(Ey+1).
Furthermore, for any t € [0,T], [{p(t,") > 3p}| < caEy, where c; > 0 may depend on T.

Before we prove Proposition 3.1, we note that there exists a constant ¢; > 0, independent of ¢,

depending only on p and « such that hs(p, p) > cip(p? — p%)2.
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Proof. Multiplying the first equation in (3.1) by (n_g)pA(z), the second equation by (1), A(z),
and then adding them together, we have
(5 A@)), + (65 = m@5)p(5:m) = (2 + Ps(p)) (1) (7. 7)) A()), + ((75),(5,R)) ;mA(x)
+(15)m (7)), (2 + s (p)) A(@) + ps(p) (05 )m (5, ) A ()
= £(A(2)pa)2 (05 + eA(2) (A(2) ™ (Al2)m)s ) , (15 )m- (3.9)

Observe that, at the end-points a and b,

2 my

G5 = ml5)o (7 ) = (= +25(0) (), (. 7) = =~ Zps(ps).
Then
b
= Lol [ (). m), + (@3 0), (2 +s(0)
+ S ) 7o m)ps(0) () (1) 3 ) ) )

b o b
= *5/ (szmz)v277§ (pz,mz)TA(:c) deFE/ (Pz((ﬁ%‘)p(ﬁv m))z +mm((77§)m(,57 m))z)A(z) dx.

Note that p + ps(p) < M (hs(p,p) + 1) and [|A||11(—c0,1,) < M and that (., m,) are supported
in (—Lo, Lo). Moreover, since m = 0 and (1} )m(p,m) = 0 for > Ly (recall we have used the
Galilean invariance to impose that u, = 0 without loss of generality), we have
’ £ (5~ N 2 Alx) o
(2000, + (05105 )) (2 ) + 5 03) 5 )l )) Al

< M(E+1).

Moreover, integrating by parts gives

b
E/ (P2 ((13)0 (P 11))a + Ma (05 )m (P 1))a ) A(x) d < Me(E + Lo + [ A"t~ o,20)) -

Finally, we have

' /
/ E‘(Z)/m((n§>m = (15)m(p, ﬁl))‘A(x) dr < eME +eM|b—a|(1+ |(AZ)/D

Since (pz, my)V2nE (peymy) " dominates hY(p)|pz|® + plus|? as in [4], we may combine all of
these inequalities to obtain

dE b
e [ (@54 Dol plual) A do < M(E + 1),

Hence, by the Gronwall inequality, we have

B() e [ (204 kDol + plusP)Alw) do < M(T)(Eo +1). (3.10)
In particular, we obtain
b
sup [ (ot~ 0)? + Tis(p,) Aw) do < M(En -+ 1), (3.11)
tel0,T] Ja

Since A(x) > Ay > 0, and hs(p, p) > 0 is quadratic in (p—p) for p near p and grows as p™@*{7:2}
for large p, we conclude
3.
o(t.) > 2ol < B

where p = max{p_, p4+}. O
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The following lemma is a simple consequence of the fundamental theorem of calculus and the

main energy estimate (Proposition 3.1), so its proof is omitted; see the proof of [4, Lemma 2.1].

Lemma 3.2. There exists C = C(e,T, Ey) > 0 such that
T
2max{2,
| etz < c.

From now on, the constants labelled C' may depend on e, whereas the constants labelled M
are independent of €. The following maximum principle result for the Riemann invariants gives a

priori control on ||(p, u)||Le in terms of the Dirichlet boundary data and initial data.
Lemma 3.3. There exists C = C(e,T, Ep) such that, for any t € [0,T],

(o, Wl Lo (@r) < C(lluo + R(po)ll o ap) + lluo — R(po)ll Lo ap)) + Clpx, us),

where

R(p) == /OP 7'1);;(8) ds.

Proof. The eigenvalues of the Euler system with pressure function ps(p) are

M =u—/5(p), A= uA/ps(p),

and the corresponding Riemann invariants are
w:=u+ R(p), z:=u— R(p).
We first note that these Riemann invariants are quasiconvex:
ViwViw(Viw)" >0, —V+iev2z(Vi)T >o.
Following [4, Lemma 2.2], we multiply the first equation in (3.1) by w,, multiply the second by

W, and then add them together with a short calculation to derive that
/

A 2 T /A/ Ay
wy + ()\2 — EZ)wI — EWgy = —€(pu, Mz ) VW(0r, M) — u\/p(;Z + E(Z) u. (3.12)

Notice that
(P:m mz) =aVuw + Bvaa

where
Wy

SV P
With this notation, we re-write (3.12) above as

pzwm - mzwp

[Vwl?

«

A A
W + AWy — EWgy = fEBQVLwVQw(VJ‘w)T — u\/p:;Z + E(ZyU,

where . ) ( )T
A VwV w(Vw
=Ny — e 2

A Ay —E— + e Va2 + 2ep

Then, using the quasiconvexity property of w, we find that

V4iwV2w(Vw) "
[Vwl?

Wy + AWy — EWgy < 0
for w defined by
t
. A Ay
w(t,:c) = U}(t,SC) /0 ||’LL ng 75(1) UHL‘X’(a,b) dr.
The maximum principle for parabolic equations gives us

@Y.

max w < max{wy, max
Qt [0,t]x ({a}u{b})
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Now we have

max w < max{u_ + R(p_),ur + R
(0.6 % ({aUTb}) { (p—), ut (p+)}

+psup{\AH ) / (4 lotr, 325yt o

Thus, we obtain

maxw < < 121132);100 + max{u_ + R(p_),ut+ + R(p+)}

t
L max{1,y—1
+C/O (1+ IIP(T,-)IIZwmi) Y (7, ) gy
Similarly,

max(—2) < ?;eg(—zo) + max{u— — R(p-), us+ — R(p4)}

max{1l,v—1
+ 0 [ 0 lotrIEZ Tt i

Noting that wq satisfies the corresponding boundary condition to (3.5) and p > 0, we see that
mex lu| < max |wo| + max |z0| + C/ (1+ [|p(, )||L:d;$’v_1}) (T, )l oo (a,b) AT

Since max{1,y — 1} < 27, we obtain that, by the Holder inequality and Lemma 3.2,

2 2
max |u|® < C max |wg| + max |z
rol | | = ( (a:b) | 0| (asb | 0|)

)

t (, 1} t
wo( [ ar o= an) ([ el ar)

t
2
< C((max |uwo| + max|z]) +c/ a7, )2 ) -
(a,b) (a,b) 0 ’

We then conclude the estimate for [|ul| s (q,) by using the Gronwall inequality.
The estimate for p is now a direct consequence of the estimates of the Riemann invariants and

the estimate of u above. In particular, we have

max{1, 1
maxR(p):%mQaX( —z)<C+C/ (1+ [|p(, )”Lw(zg)v })dTSC.

t

O

The next result provides the afore-mentioned higher order energy estimates that we require to

conclude the upper bound of |[p™!|| Lo (q,p)-

Lemma 3.4. There exists C = C(g, ||(po, wo)| Lo (a,b)> | (P0s M0) | 1 (ap), T, y) > 0 such that

b
sup / (|pz|2+|mz|2)d:c+/ (|pzal? + |Maxl?) dzdt < C.
tel0,T] Ja Qr

Proof. Throughout this proof, A > 0 is a constant which will be taken small at the end of the
argument. We make frequent use of the upper bounds on (p,u) from Lemma 3.3.

Multiplying the first equation in (3.1) by p.. and the second by m,., we obtain

1 1
(ptpx)z - §(|pz|2)t + (mtmz>x - §(|mx|2)t - 5(|pzz|2 + |mxac|2)
A/ A/ /

= —MgPrx — (PU2 +p(5)zmzm - memm - Z(pu2mzz - Epmpmm) + E(Im)zmzz
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Integrating over Q1 and recalling that p and m are constant on z = a and b, we have

1

b
5/ (|pr|2 + |mx|2)’§dz + E/Q (|p11|2 + |mxx|2) dx dt
a T

A/
:/ (Mapos + —Mpas) dodt + / (pu® + Pg)aMay dx dt
T A T

/

A’ 9 A
+/ —(pu My — {—:pzpm) dx dt — 5/ (—m) Mg dx dt.
. A AT

T

Thus, using the uniform bounds from the maximum principle, we have

b
[ U@ 0P + e )Y o [ (ol + ) dr

T
b

gA/Q (1pzal? + [0 ]?) dmdt—l—/ (|po,a(2)[* + Mmoo (2)?) da
T a

+ CA/ (19 + [mo?) dedt + Ca.
Qr
Absorbing the first term into the left by taking A small, we conclude the expected estimate. [J

It now remains only to demonstrate an a priori upper bound for p~!. To this end, we define
1_ 1, p=p 5
O + 02 p < pa

plp)=4q" " 7 N

0, p>p

for some p > 0. Note that
1 1 2
dp)=(-=5+ E)X{p<ﬁ}a ¢"(p) = FX{/J</3}'

Lemma 3.5. There exists C > 0 depending on ||¢(po)||z1(ap) and the other parameters of the

problem such that
b 2
sup / o(p(t,-)) dx +/ @ drdt < C.
te[0,T] Ja r P
Proof. Multiplying the first equation of (3.1) by ¢'(p), we have

2
Pz
¢t + (u¢)m - €¢mm + 25?X{p</5}
2(1 1) JrA’ (1 1) JrA’ (1 1)
=2(= = 2 )uaXpo<py + Pl = =5 ) X(p<iy T e P2 (53 = =) X (o<}
PR tp<py ™74 02 2 {p<p} A 2 p2 {p<p}
Integrating in (¢, ) and using the boundary conditions with p < min,¢4,5) po(2) chosen, we obtain
i |pa|”
o(p)dx + ¢ ——dxdl
a Qrn{p<p} P

11 A1 1
g‘/ 2(= — <) dodt] +‘/ Srou(=5 — =) da di|
Qrnfp<iy P P Qrnfp<py A 07 P
A1 1
+]/ eZ pu(= — =) dudt
Qrofp<py A0 P
|pa?
<A drdt+ Call+ o(p) dx dt

Qrn{p<p} P Qr
and conclude the estimate by the Gronwall inequality, where we have integrated by parts and

applied the Young inequality in the first term after the first inequality above. (I
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For z € (a,b), we take xy to be the closest point to x such that p(t,z9) = p, where p =

minge(q,5) Po(x); otherwise, we already have an upper bound on p~ 1. By writing

plt, ) 1‘_’//)yty ’Jr‘ |
we obtain

/oT ot )7 oy 4 < C(l ’ (/QT |/j;3|2 dodt)’ ((/QT o(p) du ) + 1))
SC(H(/Q |p;|2d dt)l)' (3.13)

Finally, we use the previous lemmas to show the lower bound on p.

Lemma 3.6. There exists C > 0, depending on €, T, and the other parameters of the problem,
such that

T
C < plt,a) < C, /0 12 22 ) (8 )| e < C

Proof. By the Sobolev embedding and (3.13),

T mx( T
P P (RS P e G T
’ ’ 2 3 |ps? 3
<C/ / we|”d <1+ / z / d )
() meeftaa) (10 (555 o(p) do
C

The estimate for %”” is obtained in the same way.

For u,, note first that u, = % — % and argue similarly to the above. Finally, let v = %.

Then, by (3.1), we calculate
A puU 2ep2  Alu A
v+ (u— EX)UI — €Uy = p—; - pgm a5 < (ua + ZU)U
By the maximum principle,
%axfu S CmaX{HUOHLOO,p:l, p__‘rl}efoT H(u:mu)(Tv')”LOO(a,b)dT S CHUOHLOC(a,b)
T
O

This completes the proof of Theorem 3.1.

4. UNIFORM ESTIMATES

As mentioned earlier, the purpose of this section and §5-§6 is to establish the proof of Theorem
2.1 by making the uniform estimates of the approximate solutions, independent of €. Throughout
this section, the universal constant M > 0 is independent of ¢, and we assume that the area
function A(z) € C? satisfies (1.5).

The first estimate concerns the local higher integrability properties of the density.

Lemma 4.1. Let K C R be a compact set such that K C (a,b). Then, for T > 0, there exists a
constant M = M (K, T), independent of €, such that

T
/ / (pv+1 + 6p3) drdt < M. (4.1)
0o JK
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Proof. The proof of this lemma is standard by now. We simply observe that, on the compact set
K, A, Ajl, and ATH are bounded uniformly by a constant M = M (K). Therefore, the argument as
in [4, Lemma 3.3] (compare also [3, Lemma 3.3]) yields (4.1). O

The other key estimate concerns a local higher integrability property for the velocity:

T
/ / (plul® + ) dz dt < M.
0o JK

The proof of this estimate relies on the observation that a careful choice of the generating function
1 = 1(s) yields an entropy flux function of strictly higher growth rate than its associated weak
entropy function. This observation was first made in [17] and is contained in the next result, which

has been taken and adapted from Chen-Perepelitsa [3, 4].

Lemma 4.2. Let (n#,q%) be the entropy pair corresponding to 1y = x(w) = %w|w|. Then, for

P(s) = Yu(s —u_), the associated entropy pair (1), q) can be written, for some constant «, as

i(p,m) =n*(p,m — pu_),
d(p,m) = % (p,m — pu_) +u_n*(p,m — pu_),
i(p,m) = ap”  (u—u_) +ra(p, plu —u_)),

Ira(p, plu — u_))| < Mplu —u_|2.
Moreover, for the notations:

ﬁ(pv m) = ﬁ(pv m) - vﬁ(pfvm*) ’ (p —p-m— m*)v

m2

q(p,m) == q(p,m) — Vij(p—,m—) - (m, - +p).
the following inequalities and identities hold:
[i(p,m)| < M (plu—u-|*+ p(p” = (p-)")?),
q(p,m) > %(plu —u_ PP+ p"1) = M(p+ plu—u_|]* + p),
q(p—,m-) <0,
m2
| = a+miy+ | < Mg+ M,
i = a0 = (p2)%) + (u—uyr(p,u),  Ir(pyu) < M,
mijn| < M (p(u—u-)*+ p(p” = (p-)*)* + p),
|Gim) ol < Mp"™1, {(iim)ul < M,
| < M (Ju—u—| +1p" = (p-)"]).
Before proving Lemma 4.5, we need the following technical lemma.
Lemma 4.3. For any compact set K C (a,b), there exists § > 2 such that
E/T /”” P2 (t, ) A(y) dy dt < M|a|? for any x € K, (4.2)
0o Ja

where M = M(K) is independent of € > 0.
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Proof. The proof is divided into three cases.

1. When v € (1, 2),

T x T
5/ / psAdydt§M5|a|/ sup p°> =7 dt
0 a (a,x)
< Melal 1+/ / (p?) |dydt)
T T
< Melal 1+/ / prB'VA*ldydtJr/ / p772|py|2Adydt)
0 a 0 a

T rx
< Mela| 1+/ / p6_3VA2_VA7_3dydt)

< Mcelal 1+/ / Sl + DM |+1) +M|a|ﬁ1<7>A1—i‘?)dydt),

where we have used the Young inequality. Then

T x
E/ / P dydt < Ms|a|ﬁ('y)
2 0 a
where 8(y) = f1(y) +1

2. Now we consider the case: v € [2,3]. Note that [ pAdy < M(Ey) + Mla| < M|a|. Then

T x T x
/ / p?’Adydtg/ supr(t,-)(/ pAdy) dt
0 a 0 (a,z) a
T T
§M|a|(1+/ / plpyldydt)
0 a

T x
—utlal(1+ [ [y ayar)
0 a

< Mlql 1+s*1+/ (P"A+ A 2wf4)dydt)
0 a
< Mla|(1+&" +|a]),
where we have written A=1 = A5 A% and applied the Young inequality with exponents ;21—

5

2')7—4 :
3. Finally, for v > 3, the estimate follows directly from the main energy estimate, Proposition
3.1. O

Lemma 4.4. Let (ny,qy) be an entropy pair such that the generating function v satisfies
sup [¢"(s)] < occ.
Then, for any (p,m) € R?, £ € R?,
€TV (p, m)E| < My V20" (p, m)E,
where My, depends only on 1 and 7.

The proof is direct; see [3]. Also recall that the mechanical energy n*(p, m) is convex.
The next lemma concerns the higher integrability property for the velocity and is another crucial

estimate for applying the compensated compactness framework of [3].
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Lemma 4.5. Let K C (a,b) be compact. Then there exist a constant M = M(K,T) and an
exponent 3 > 2, both independent of €, such that

T B(S
/0 /K (plul® + p7 ) dz dt < M(l—i—% +€|a|).

Proof. We prove the property for the nozzles satisfying condition (1.3), since the other case (1.4)

can be handled by corresponding similar arguments.

We multiply the continuity equation in (3.1) by 7,4 and the momentum equation by 7, A to

obtain that, after a short calculation,
. . , . L m? . /
(7A)e + (GA)z + A'(— g+ mi, + 7%) + At (p—, m-)p(p)
!/

A’ _ A N -
= e(poa + sz)npA +e(mg + Zm)ﬂmA — (6p%) e im A. (4.3)

Integrating both sides of (4.3), we find
T ~ T R T R ~
| awiaar = [ it = [ Grs) - i0.0) A0 dy
/ / q—l—mnp—f——??m)dydt

A A _
+ 5/ / A(pyy + Zpy)np + A(my + Zm)ynm dy dt

—5// %)y Tim dy dt — //Anmp ;m-)p(p) dy dt. (4.4)

Now we employ the crucial observation that the first term, which is poorly controlled in absolute
value, is actually negative by Lemma 4.2, and so may be neglected. Considering the fourth integral

on the right hand side, we integrate by parts to see

L W ik )] Ay
fs/ Aly) (7(t, z) dtfs/ / )0y (T1p)y + My (7)) dy di
—l—zs/ / i/ mnm A(y) dy dt, (4.5)

as 7, = Tm = 0 at * = a by construction. Likewise, integrating by parts in the fifth integral,

/ / ynm dy dt

— / / (ot + ()t A + i A ) dyde+ [ i Ay (46

Combining (4.3)-(4.6) and applying the bound for —g + m1j, + m—Qﬁm from Lemma 4.2,

/O G(x)A(z)dt <I(z +M/ / |A' (y y)+ 1) dydt
T
+€/O (A(z )n(t,z))mdt 5/0 P Nm A(z) dt, (4.7)
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where

~ T x A/ ~
M/ )|7(T,y) — 7(0,y)| dy dtJre/ / }A(Z)ymnm| dy dt
0 a
T x
+ 5/0 / ’Apy(ﬁp)y + Amy(ﬁm)y’ dydt + 6/0 / ‘ApQ ((ﬁm)ppy + (ﬁm)uuy)’ dy di

T x T x T

vo [ [l dgder [ [ Ao m o) dyd +< [ 140 d
0 a 0 a 0

=L+ +1Ir

Note that [ is increasing in  and |A7/| < M. By the Gronwall inequality,

T T T
/ Ag(x) de < I(z)els 141 4 ¢ / (A7(t, ) dt — / S 0% A dt
0 0

z T
+/ (5(/ An(t,y) dt / 5% Tm Adt)|A’|e |A|d5d
a 0

We take a smooth cut-off function w(z) with compact support in K such that w(xz) < 1. Observe
first that by the bound |7(p,u)| < M (p|lu — u_|?> + p(p® — (p—)?)?), we obtain, from Proposition
3.1,

(4.8)

/ Nt y)A(y) dy dt < M(Ey+ 1) for any x € supp(w). (4.9)
Thus, we may integrate (4.8) against w and estimate the terms on the right as follows.
‘/ / / An(t,y) dt) | A |y 1471 ds dydm‘ (4.10)
<eM(|| A1, [|A" ]| o) / / / 7(t,y) dydt de + M < eM|al,
2 YA ds lal’s
‘/ (/ 5p ﬁmAdt)lA/|efm 1A% ‘de‘ < M/ / Sp3Adydt < M——, (4.11)
a 0 0 a )
T T
’6/ w/ (An(t, z)) dtd:c‘ = ’5/ / wmAﬁ(t,:c)d:cdt’ <M, (4.12)
K Jo * o JK

where we have used Lemma 4.3.
Therefore, the lower bound ¢ > - (plu — u—[> + p?*%) — M(p + plu — u_|? + p) yields that,

after multiplying by w and integrating in z, we have

T
// wA(plu —u_ > + p?*?) dt da
K Jo
c|A'd g |al’s
§/ w(a)I(z)els 1] Sdnc—i—M/ w/ (p|u—u_|2+p'y+p)dtdx+M(1—|—T—|—5|a|).
K K Jo

For the term involving I(x), we have seen [, [I1|dz < M by (4.9). Now we can use the inequality

for |m},| from Lemma 4.2 to obtain

/w|12|dx<M}/w€/ / |A( Z M| dy dt dz|

SM/ ws/ / AT, o+ plu =) + ple” — (o)) |yt da

/
<M/wg//\A— ), (L +n})|dy dt dx

< EMHA( |a| < eM|al,

HLOc (a,x)
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where we have used that x € K and M depends on K.

Moreover, we have

T x
| 73] :5/ / [ Apy (71p)y + Ay (m)y| dy dt
0 a
T x
—< [ [ Aoy V(g m,) |y
0 a

T rzx
§M¢€/ / A(py,my)v2ﬁ(py,my)T dy dt
0 a
SME07

by Proposition 3.1 and Lemma 4.4.
Next, also by Lemmas 4.2-4.3, we obtain

T x
|14|5/0 / |AP? (i) oy + (i )ty )| dy dt
T x
§5/ / ApQ(Mp9_1|/)y|+|“y|)dydt
0 a
T x 1
géM(/ / Ap®dydt)* ( / /Ap7 *lpy|* dy dt)*
e 1
+5M(/ / Ap?’dydt)i(/ / Apluy|* dy dt)*
) OT “z 1 ’ ’
__M(/ / Ap® dydt)*®

lal”s
€

-

<M-——-

Again, from Lemma 4.2,

|f5|<M6//|A’|p (alp? = (p)°| + Mlu — u_|) dy dt

<6M/ / ) (0% + p(p? — (p=)?)* + plu — u_|?) dy dt
5(M+M/ / Apgdydt)
(M+M|a| .

Since |%’| is uniformly bounded,

T T
|16|=/ | 14—l ay < ar [ [ (afsto. )+ 40y
0 a
<MT E0+ ||A/||L1( oosup(K)))

/ |I7|dxf/ / |A/||7]|dtdz<M/ / )|t x)| dedt < M.
supp w

7, show that

/ w(@)I(z)eld 414 gu < M,
K

and

These estimates for I;, j =1, ...

and hence we conclude the proof.

17
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Once we have shown the above estimates to be uniform, we can apply the compensated com-
pactness techniques from [3], as in [4]. To make this rigorous, we require our approximate solutions

in the construction to satisfy the following:
(1) (p§,mg) = (po,mo) a.e. © € R as e — 0, where we take (p§, m§) to be the zero extension
of (p§, m§) outside (a, b);
. b—~ — )
() [, n5(p5(x), m§(2)Ax) dz — [ 17 (po(), mo(x))A(z) da as & — 0;
o 8lal? .
(iii) =—— < M;
(iv) glb—a| < M,
where M < oo is independent of € € (0, 1].

With these properties of the approximate solutions, the bounds in the above lemmas become

uniform in e.

Proposition 4.6. Let (1,q) be the entropy pair generated by ¢ € C°(R). Then the entropy
dissipation measures:
n(p",m%)e + q(p°, M),

lie in a compact subset of Hfocl.

Proof. We divide the proof into six steps.
1. We first recall the following fact from Lemma 2.1 in [3]: For a C? function ¢ : R — R of

compact support, the associated entropy pair (7, ¢) satisfies

n(p;m)| + la(p,m)| < Myp  for vy € (1,3],
la(p,m)| < Mypmax{1,p°}  fory >3,
|1 (0 )|+ | p1imm (p; m) | < My,
05 (P, m) + win (p,m)| < My (1 + p°),
D (05 pu)| + 0"~ 1o, )| < My,
where, in the last inequality, we regard n,, as a function of (p, u).
2. Write n® = n(p®, m®) and ¢° = q(p®, m®) with m® = p*u®. Then
A A A
n; 4 ag = — —pptut (g unn) e (kg + (Fm) )
—e(pe(m)a +mS(15)2) +ente — (6(0°)) i

=:I;+---+ I (4.13)

We want to prove that this is a sum of terms bounded uniformly in L*(0,7; L}, .(R)) and terms

that are compact in VVl;cl “(R2) for some ¢ > 1. Then the compact Sobolev embedding of L'

into W14 (locally in Ri) gives the compactness of the entropy dissipation measures in some
_1,

W, " (R%).

loc

3. To this end, first observe that
A’ 0 A’ 5
5 ) < M1 (14 (69 ] < MY (e + 57 + (7))

is uniformly bounded in L'(0,T; L} .(R)).

loc
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Now we see
I i A/ I

A A
5 =e(opns + () om™ni) = e () (mmg, = %) + 2 (),

=: ISa + IQEb
One can easily check that [n° — m®nS,| < M (p° + p*|u®|?). Thus, I5, — 0 in L},
Next, for w € C°(R2),

!
| I5yw(t, z) da dt] = |e %nawz da dt|

supp w supp w
< eM (supp w)||p*[| Lo+ (supp ) w1 w2 ) -
Hence, I3, — 0 in H;}(R%) as ¢ — 0.

Moreover,

|I5] = e[(V2n(p%,m*) (5. m5), (p5 ma))| < Mye(V2F (p°,m) (05, m5), (o5, m3)),

which is uniformly bounded in Ll(O T Ll1OC

4. The next step is to show that I§ — 0 in VVl;Cl’q for some ¢ > 1.
Claim. Let K C R be compact, 0 < A < 1. Then

T 2
/ / 5%|pi|2dxdt§M(T,suppw)(A—i—g—i—gA‘l_V—i—%).
0o JKk

T
/ / €%|p;|2d$dt—>0,
0o JK

(R)) for some ¢ € (1,2).

Hence

and
en, — 0 in L9(0,T; L}

loc

We now drop the superscript € and prove the claim. Define
02
2

p <A,
P(p) =
S +A(p-A), pzA,

so that ¢"(p) = x{p<a}, and

5, p<A,
pd'(p) = dlp) =
5, p2A

)

Let w = w(z) > 0, w € C°(R). From the approximate continuity equation (3.1),

(pw (Puw?)y — 2¢uw,w

), +
& (0)pes® + ¢ () poiw® + (p)uw?
— — ¢ (P)pats? — & (p)puaw® + & (p)psucs? + B(p)upes?

A/
— Zqﬁ’(p)puwQ + 20/ (p) (prw + P )
A’ 1
= - puw Zmin{p, A} — 5 Uat (p X{p<a} TA X{p>A})
I

. A
+ e(¢'w?pa)s — ew?|pa*X{p<ay — 26 min{p, Alw,pew + X min{p, A} p,w?.

(R)) by the main energy estimate, Proposition 3.1.

19

(R%) as e — 0.
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Thus, by integrating, we have

T
/ /€w2|pz|2x{p<A} dx dt
0

T T
1
= /¢w2|OT dzr + 2/ /qﬁuwzw dz dt — 5 / /(pQX{,KA} + AQX{DA})wQum dx dt
0 0
T A T
f/ /ZpuwQ min{p, A} dz dt — 2/ /&?min{p,A}wzwpz dx dt
0 0
T A’
—|—/ /5— min{p, A} p,w? dz dt
O A
:J1++J6

The first four terms, Ji, ..., J4 are bounded by using the uniform energy estimates, giving a bound

of M %. We therefore focus on the last two terms, Js and Jg.
T T
|J5| §2\/E/ /\/EPX{p<A}|wz|w|pz|dxdt+2\/5/ /\/EAX{p>A}|wz|w|pm|dxdt
0 0

T T
Si/ /|pm|2x{p<A|}w2dxdt+M5/ /A2|wz|2d$dt
0 0

T
JrM\/E/ /\/E|px|p%x{p>A}p%A|wm|wdxdt
0

3

T
SZ/ /|pm|2x{p<A|}w2dxdt+5A2M
0

T T
+M¢5/ /f:‘p””lpml%2 d:cdt+M\/E/ /x{p>A}p2*7A2w§ da dt
0 0
.
< Z/ /|pm|2x{p<A}w2 dadt +eA*M +/eM
0

T
+ M\/E/ /AX{A@}pB*'ywi dzx dt
0

3

T
=1 / / |02 * X (peay® du dt + V/eM + VEATTM,
0

where we have used that p3~7 < p?*! and Lemma 4.1 when v € (1,3], and p>=7 < A3™7 on

{A < p} when v > 3.

Next, using a similar argument to J5; and the bounds from Proposition 3.1, we have

T A’ ) T A’ )
| Js| <e | |w?ox p<aylpolde dt + |5 [w? Ax(p>aylps| du dt
0 A 0 A

T !/
€ 2 2 o A
Sz/o /|pz| WX {p<ay dr dt + MeA ||Z||Lx(suppw)|suppw x [0, 7]

T /
A J .
+M\/g/ /\/E‘Z“lep T X{a<pP ? AWQd.Tdﬁ
0
T
SZ/ /|p1|2w2X{p<A} dzdtJr\/gAMqL\/EA‘l*’yM.
0

Thus,

T
A
/ /€w2|pm|2X{p<A} dx dt S M(\/E(l + A4—’Y) =+ 7)
0 g
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Moreover, we have

T
/ /5w2|pm|2x{p>A} dx dt
0

T T
<MvE [ e nPutvacpdodt s MVE [ [exacpst wtdnds
0 0

3
g2 M

T
< VeEM + \/EM/ /sX{A<p}w2(1 + "™ drdt < eM + A
0

Therefore, we conclude

52

T
/ /€%|pz|2w2dxdt < M(A+e+eA*™ + A),
0

so that

T
/ /Eg|pm|2dxdt—>0ass—>0.
0

For the second part of the claim, note that

|77x| < M(|Pz||77p + unml + P|Uz77m|) < M(|pm|(1 + /’9) + p|ux|)

Let g € (1,2) be such that - =~ + 1. Then

T T T
/ /5q|nm|qd:cdt SM/ /f—:q|pm|qdzdt+/ /Eq‘|pz|p9+p|um|’qdzdt
0o JK 0o JK 0o JK
M T
§A+—/ /€2|pm|2dxdt
Ay Jk
T q y=2
+M/ /Eqpﬁ(!prz!qﬂﬁwlq)dzdt
0o JK

M T ‘
<A+ A\/E/ /€%|pz|2dazdt
0 K

T
+5q71M/ /5(p772|pz|2+p|uz|2) dx dt
0o JK

T
+5q_1M/ /spﬁ dz dt
0 K

M T
<A+ ﬁ/ / £2|pg|? du dt + 7 M.
0 K

A
Thus, I§ = enS, — 0 in W, 1%

5. Consider finally If = (6(p°)?) n5,. In the case that v < 3,

T T
/ / |IZ| dz dt §Mw/ / dplps| dz dt
0o JKx 0o JK

T 52
M/ / (e0"2lpal® + —p* ) dudt
0 JK €

T 2 2
M(/ / 6—p3d$dt+6—+1)
o JK € €

M(i_—2+g+1),

IN

IN

IN

which is uniformly bounded in €.
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If v > 3, consider the above on the domains: {p < 1} and {p > 1}. On the latter domain, we

T
[ ] s
0 Kn{p>1}
T T
/ / |IZ| dz dt §M—|—Mw/ / 0p|ps| dz dt
o JK Kn{p<1}

<M+MT|K|% // 52p2p2d:cdt)§
Kn{p<1}

§M+M / /55pid:cdt)§

Thus, If is uniformly bounded in L*(0,T; L}, .(R)).

argue as above to obtain

so that

6. In Steps 1-5 above, we have shown that 7n(p°, m®); + q(p°, m®), can be written as
n(p=,m%)e +q(p°,m%)z == f* + g%,
where f* is uniformly bounded in L'(0, T; L}, .(R)), and g° — 0 in W, »%(R?) for some ¢ € (1,2).
Thus, there exists ¢; € (1,2) such that

n(p, m®)s + q(p°, m%), is pre-compact in W, (R%).

We also know from Lemmas 4.1 and 4.5 that n(p°, m®) and ¢(p°, m®) are uniformly bounded in
L (RZ), where go = v+ 1 > 2 when v € (1,3] and ¢o = L‘tg > 2 when v > 3. Then, by the

compensated compactness interpolation theorem,

n(p®,m®) + q(p°,m°)y is pre-compact in W, ?(R%).

5. CONVERGENCE TO ENTROPY SOLUTIONS

Proposition 4.6, combined with the uniform estimates above, implies that the sequence of
approximate solutions satisfies the compensated compactness framework in Chen-Perepelitsa [3].

With this framework, specifically the results of §5 and §7 in [3], we conclude that

(p°,m®) = (p,m)  a.e. (t,x) €RY,

(Rﬁ_) X Lfoc( 2), forpe[l,y+1) and ¢q € [1, %) This restriction may be

3(y+1)
y+3

The uniform estimates also give us the convergence of the mechanical energy as € — 0:

p
and also in Lj

seen as |m|? = pi |u|qp 5 < plul® + p7L, precisely when ¢ =

i (p%,me) = " (pym) in Ljo(RY).
Moreover, from (3.11), we have
/ / (p,m)(t,x)A(x) dxdt < Mty — t1)/R77*(/)0,m0)(96)A($) dx + M,
so that, for a.e. t > 0,
[ (o.m)(e.0) @) do < 01 [ o7 o o) o) AGe)dr 4 0.

This implies that no concentration of the density p is formed at any point in finite time.
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We also see that, for any convex ¢(s) with sub-quadratic growth, the uniform energy estimates
of Lemmas 4.1 and 4.2 and the main energy estimate, Proposition 3.1, give that the sequences:

£

Mor G T Oply

are equi-integrable. Thus, given such a function v, we multiply (4.13) by A(x) and integrate
against a smooth, compactly supported test function in Ri, and then pass to the limit to obtain
the entropy inequality (2.8).

It remains only to check the limit in the equations in the sense of distributions. This is straight-
forward by multiplying the equations of (3.1) by a test function and integrating by parts before
passing to the limit and using the uniform bounds above. Note that, in the momentum equation,
the term Jp? vanishes in the limit as § = d(¢) — 0 as € — 0. This completes the proof of the main

theorem, Theorem 2.1.

6. TRANSONIC NOZZLES WITH GENERAL CROSS-SECTIONAL AREAS

As mentioned in the introduction, the approach laid out above applies to much more general
situations, for example an infinitely narrowing nozzle with closed ends or an expanding nozzle
with unbounded ends. In this section, we remove the additional assumptions placed on A(z) in
§3-85 to conclude the proof of Theorem 2.1 for transonic nozzles with general cross-sectional area
function A(x) satisfying (1.3) or (1.4).

More precisely, we now relax the lower bound on A to A(x) > 0 and allow A’ to be only in
L'(—00,0) or L*(0,0), especially allowing that the cross-sectional area function may converge to
0 as x — +oo and to co as * — —oo or co. For ease of reference, we restate the main theorem,

Theorem 2.1, as follows:

Theorem 6.1. Assume that (pg,mo) € (L},.(R))? with pg > 0 is of relative finite-energy and
that the cross-sectional area function A € C* satisfies (1.3) or (1.4). Then there exists a sequence
of approximate solutions (p°, m®)(t,x) solving (3.1)~(3.5) for some initial data (p§, m§) such that
(p5, m§) — (po,mo) a.e. x €R as e — 0, with (p§, m§) taken to be the zero extension of (p§, m§)
outside (a,b), and (p°,m®) — (p,m) for a.e. (t,z) € RL :=R; xR and in L} (R3) x L] (R%)
forp e [l,y+1) and ¢ € [1, 39:31)

entropy solution of the transonic nozzle problem (1.1)—(1.2) for end-states (py,my).

), as € — 0, such that (p,m)(t,z) is a global finite-energy

First we recall that, without loss of generality, we may assume u4 = 0 by the Galilean invariance
of the original multidimensional Euler equations.

As we continue to impose the Dirichlet boundary conditions for the approximate problems
(3.1), the existence of the approximate solutions is obtained as before (observe that once we
restrict attention to the interval (a,b), we recover 0 < Ag(e) < A(x) < Ai(e) < o0). However, we
then need to demonstrate more carefully the uniform energy estimates of Proposition 3.1 and of §4
that enable us to employ the compensated compactness framework in [3] to pass to the vanishing
viscosity limit and obtain an entropy solution of the transonic nozzle problem. In order to make
these estimates uniform with respect to €, we choose d(¢), a(e), and b(e) such that the following

hold for a constant M independent of «.
e clb—a| < M,
N/
o <ll(50) Iz (an) | Al L (ap b — al < M,
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A" || oo (apy < M,
5™ [| All o (0, lal P ]| A3
b M| All oo (a,pylal < M,
Sl AN oo (o, || A5

HL“(a,b) < M’

M.

o (o =
*(a,b)
Such choices of the parameters can be achieved as long as the cross-sectional area function A € C?
satisfies (1.3) or (1.4).

6.1. Uniform Estimates. As mentioned, to establish Theorem 6.1 for more general nozzles, the

first step is to obtain the uniform energy estimate, which is the subject of the following proposition.

Proposition 6.1. Let

b_
B = sup [ T (p5(),m ) Alw) do < oc,

e>0
Then there exists M > 0, indepen;ent of € > 0, such that, for all € > 0,
Sup /ab (3plu —al? +hs(p, p)) Alz) da (6.1)
+ 5/ (RF (p)p2 + pul + |(ill/((;)) )/pu(u —u)|)A(z) dwdt
T
< M(Ep+1). (6.2)

Proof. We prove estimate (6.2) for the nozzles satisfying condition (1.3), since the other case (1.4)
can be handled by corresponding similar arguments.
Exactly as in the proof of Proposition 3.1,
dE m b s - = “ _ m?
= Tl [ (). m)  Alz) + () (5 ), (5 + p3(0) Al)

dt
0 ) ) @)ps(0) + & (g ) (15— () ()) o

b b
S / (P M) VETE (P ) T A(2) dos + 2 / (P (1) (52 17)) + 10 (5 ) (. 72)) ) A(z) di.

Observe now that

b
e / (P (1) (7. 7)) + 00 (1) (.17 ) A()
Lo
<—¢ / (o)) (37 + (7 )5 7)) A () i

Lo
- 6/ (P((05)p (P, 1))z + m((03 ) (P, 1)) ) A() da

Lo
+(p((13)p (5 1))x + (15 ) (s )2 ) Al
<eM(p,m)(E + | A"l 11 (=Lo,z0) + Al Lo (= Lo, L0) L0)
<M(E+1),
since (p,7m) are constant outside (—Lo, Lo) so that ((n;),(p,m)), and (m2)m (P, m)), vanish
outside this interval. We have also used that |a(e)| > Lo and |b(e)| > Lo to see that the boundary

term in the integration by parts vanishes. Similarly, we have

b
[ ml0), 6. m) Alw) do < ML) Lo(E + 1),
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b m2
/ (05) 0 5),, (= + ps() Ala) e < M Al 12y Lol E +1).

Using the uniform bound |A?/| < M, and (n})m(p,m) =0 for > Ly, we obtain
b Lo o
[ psto)iimtp.m A @) d < [ (MA@S(.0) + 14 (@)]) do
SME + | A 21 (~o0,Lo)-

Finally, we make the estimate:

[ A (1 01

b
SEMH(A) HLco(a b)/ (p(u—ﬂ)2+pa2)A((E) d(E

5

<€MH( ) | 2o (a,0) (B + |All Lo (a0 |0 — al)
< M(E+1).

With these estimates, we use the Gronwall inequality to obtain the result as before. (I

We must now consider the key estimates of Lemma 4.5. Before that, we first consider Lemma

4.3. In the first line of the proof, we make the initial estimate:
T
/ / y) dy dt < ela| M||Al| Lo (q, b)/ sup p~7 dt.
(a,x)

Continuing with the proof as before, we find that, by assumption,

T y-3 €
g/ / o dy dt < Mel| All o (el AT oy + 1) < M.
0 a

The other case, v € [2, 3], requires a similar modification, leading to

T x 4 c
5/ / p’Adydt < M||A||L=(anlal(e +1+€lal| A5 || o (ap)) < M.
0 a

Finally, we examine the proof of Lemma 4.5. Turning attention to estimates (4.10)—(4.12), we see
that they remain uniform, under the assumption that e||A”|| L4,y < M and the uniform bound
of Lemma 4.3.

We need to make the bounds on all of terms I;,j =1,...,7, uniform in ¢ in order to conclude

the expected result. Note first that I; and I3 need no adjustment. We have seen that

A
| it do < Meal AT | oy < M.
by assumption. Examining the estimate for I, shows that
|14 <— / / (t,y)Ay) dy dt) B <M uniformly in e.

The bounds for I5 and I are seen to be uniform, due to the uniform bound of Lemma 4.3 and
A?l| < M. Finally, we have

/|17|dx—HAHLw/ / )it 2)| A(x) da dt < M.
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6.2. Compactness. With the uniform estimates discussed above, the only thing remaining to
prove is Proposition 4.6. Its proof is seen to follow as before by using the uniform bound |Aj/| <M
and by observing that, in each of terms Jy,j = 1, ..., 6, all the integrals are taken over the support
of the test function w, so that the factors of A, A~1, etc., may be introduced freely. This concludes

the proof of the main theorem, Theorem 2.1.

7. SPHERICALLY SYMMETRIC SOLUTIONS TO THE MULTIDIMENSIONAL EULER EQUATIONS

In this section, we explain how the approach and techniques developed in §3— §6 above can
be generalized to construct global spherically symmetric solutions to the multidimensional Euler
equations for compressible fluid flows, as considered in Chen-Perepelitsa in [4]. This situation
corresponds to the case that A(z) = w,z" ! : Ry — Ry, where w, is the surface area of the
n-dimensional unit sphere.

In [4], the possibility of a blow-up of the density at the origin is allowed by imposing a Neumann
boundary condition at the left boundary for the approximate solutions. By the Galilean invariance,
the velocity can be taken to vanish at © = oo, so the end-states (p4+,us) = (p,0) at b(e) are
imposed, where p — 0 as € — 0. Then the solutions of this approximate problem were constructed
under the assumption that v € (1, 3], while the convergence of the approximate solutions to the
limit is shown for all v > 1 in [4].

The following theorem gives the extension of this result for all the physical interval v > 1,

especially including the unsolved case v > 3, which leads to Theorem 2.2.

Theorem 7.1. Let (pg,mo) € (L},.(Ry))? be finite-energy initial data such that po > 0. Then

there exists a global finite-energy entropy solution of the spherically symmetric Fuler equations:

pt +mg +2=tm =0, (t,x) € Ry x Ry,
mi+ (2 +p(p), + 212 =0, (t,z) € Ry x Ry,
(p,m)]e=0 = (po,m0), r e Ry,

where p(p) = kp? with v > 1. This global entropy solution is the vanishing viscosity limit of the

approximate solutions of the following system:

p5 +m§ + =tme = ex= (07D (gn—1pe)

Tz (t,:C) € ]RJr X (a(s),b(s)),
(77;)2 , (t,x) € Ry x (a(e),b(e)), (7.1)
(p%sm)e=0 = (PG, Mm3), z € (a(e), b(e)),

with appropriately chosen boundary conditions; that is, as € — 0,

I,

Fp5(p7)), + 2SS = (s + )

T pe

m§+(

x

2
(p%,m®) — (p,m) for a.e.(t,x) € RY
and in L} (R%)x L}

loc

(R2) forp € [1,7+1) and g € 1, %) Here ps(p) = kpY +6p%, a(e) — 0
and b(e) — o0 as € — 0, and (p§, m§) — (po,mo) a.e. z € R ase — 0, where (p§, m§) are taken

to be the zero extension of (p§, m§) outside (a(e),b(e)).

To overcome the obstacle encountered in [4] for the unsolved case v > 3, we develop two
approaches here, thereby providing two methods for re-solving the problem for the spherically
symmetric solutions for the whole range v € (1,00). In §7.1, instead of taking the Neumann data
for p at a(e) as in [4], we choose the Dirichlet data at both ends here. One of the motivations is

the fact that the boundary data are allowed not to be preserved in the limit (as boundary layers)
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by choosing (p, u)|z=a = (p,0) for the same p as at the other end-point in the construction of the
approximate solutions. This allows us to use the above construction from §3 (especially the max-
imum principle for the approximate equations) to demonstrate the existence of the approximate
solutions.

In §7.2, we consider the same problem but with the Neumann boundary data initiated in [4].
We are able to demonstrate how the higher order a priori energy estimates may be obtained for
the approximate solutions even in this situation to conclude the existence of the approximate
solutions for all v > 1, especially including the unsolved case v > 3, concluding the scheme set
out in [4].

7.1. Dirichlet Boundary Conditions for the Density. We first demonstrate how the imposi-
tion of the Dirichlet boundary conditions for the approximate system (7.1) may be used to obtain
the existence of globally defined, spherically symmetric entropy solutions of the compressible Euler

equations. We therefore assign the Dirichlet boundary conditions to system (7.1):

(pv m)|I:a = (ﬁv 0)5 (p5 m)|z:b = (ﬁv 0)5 (72)

where p = p(e) — 0 as ¢ — 0.

Once again, the main point to check is that the key energy estimate holds for the approximate
solutions. Indeed, the imposition of the Dirichlet data (rather than the Neumann data) enables
us to apply the framework in §3 directly to construct the approximate solutions. Moreover,
by choosing the same boundary data at the two end-points, we may take the monotone reference

functions (p(z), @(x)) to be the constant state (p,0). Then the relative mechanical entropy becomes

s (psm) = 15 (p;m) — 15 (p,0) — (15),(p,0)(p — p).

Proposition 7.1. Let

b
Ep := su;g/ n; (pg(x), mg(x))A(z) de < oo.
e> a
Then there exists M > 0, independent of €, such that, for all € > 0,
b
sup / (3pu® +hs(p, p)) 2"~ da
tel0,T] Ja
pu?
+ E/ (hs(p)ps + puz + (n— 1)—)a" " dw dt < MEy.
x
T

Proof. With the above choice of A(z) = w,2" !, equation (3.9) is simplified as
52" e+ ((a5 — (13),(0.0)), +e(n — Lym(15)ma" ™
= 5(pzzn71)m((n§)p - (U;)p(ﬁa 0)) + E(mmxnil)x(ng)m'

Integrating this over the parabolic cylinder Q1 and then integrating by parts with the new Dirichlet

boundary conditions implies

- n—1 2 T on—1m?*
/ Ny dx—l—a/ ((pz,mz)v ns (Pz, M) + . 7)30 dzx dt = Ey,
a T
as desired. Then we conclude as in Proposition 3.1 by the convexity of 75. O

With this estimate, we are now in the situation of §3 of this paper. We can therefore proceed

with the maximum principle estimate of Lemma 3.3 to obtain a priori upper bounds on the
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density and velocity of the fluid, and continue to deduce the existence of solutions (p®, m*) of the

initial-boundary value problem (7.1)—(7.2), exactly as in Theorem 3.1:

Lemma 7.2. Fore >0, let (p§,m§) € (C**#([a, b]))2 be a sequence of functions such that
(i) infa<ozp p5(z) > 0;

(i) (p§, m§) satisfies (7.2) and the compatibility conditions:

(:C"_lmg)m‘ =0,

r=a

m8,1|ﬂf:b = Exi(nil) (zn71p8 I)z|m:b’

£\2
((mp—oﬁ) +p6(p8))m‘x:b = ez~ ("D (CA ) I

(i) f (1l + STy on 1y < oo,
Then there exists a unique global solution (p=, m®) of (7.1)=(7.2) for~y € (1,00) such that (p*, m¢) €
(C2H8145(Qr))? with infg, p*(t,2) > 0 for all T > 0.

To conclude the proof of Theorem 7.1, we note that, as remarked in [4], the arguments to derive
the uniform estimates and convergence of approximate solutions in [4] do not depend on the choice
of v € (1, 3], but rather work for all ¥ € (1,00). In addition, we now observe that, in obtaining
these uniform estimates, the integrals were considered only over compact regions K C R, or over
intervals (z,b) with z € K for a compact region K C Ry. Therefore, our modification of the
boundary condition at a(¢) in the above does not affect these estimates at all. In particular, we

have the following lemma:

Lemma 7.3. Suppose that (p§, mg) satisfy the assumptions of Lemma 7.2 and that

b 2
(mg) K(pg)" -1
——+ —— 2" d .
stip/a(ng +771)$ T < 00
Let §(¢),a(e),b(e), and p(e) satisfy the following relation:

_ 0

p’)’bn + Ebn S Ma

where M is a constant independent of €. Then, for any compact region K C Ry, there exists
M > 0 independent of € such that

T
/ / (o) +6(0°) + p° [ + (o)) dwdt < M.
0 K

In addition, if ¥(s) is any smooth, compactly supported test function on R, then the associated

entropy pair (0¥, q%) satisfies

0% (p%,m%); + q%(p°, m), are compact in H; !

loc*

The convergence of the approximate solutions to an entropy solution of the spherically sym-
metric Euler equations now follows from the standard argument in [4]. This completes the proof
of Theorem 2.2.
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7.2. Neumann boundary conditions for the density. Finally, we consider the approximate

solutions of system (7.1) with the boundary data given by
(pma m)|z:a = (Oa O)a (pa m)lm:b = (ﬁa 0) (74)

This choice of Neumann data for the density at x = a has the advantage that it allows the density

of the approximate solutions to become very large near the origin, a motivation for its choice in
[4].

From [4, Proposition 2.1], we see that the mechanical energy is uniformly bounded:

Lemma 7.4. Suppose that (p,u) is a C*1(Qr) solution of problem (7.1) and (7.4). Then, for
each € > 0,

b
1 _
sup / (5ou® +ho(p, p)) 2"~ da
0,7 Ja

1" 2 2 pu 4
+e (R5 (p)|px|® + plug| +(n—1)?)x dx dt < Fy.
Qr

Observe now that hs(p, p) grows, for p large, as p7. In order to close the estimates of [4, Lemma
2.3] for all 4 > 1, we require an additional higher order integrability of the density p. To this end,
we take the test function 1(s) = s* and consider the entropy n¥ generated from it. We observe

that, by a simple calculation, ¥ satisfies
put + 277 < My (p,m) for all (p,m) € R%, (7.5)

where the constant M depends only on v > 1.

Lemma 7.5. Let )
& = / 0% (p5, m§)z" ! dz < oc.
a

Then solutions (p,m*) of (7.1) and (7.4) satisfy that, for any T > 0,

b
sup/ 0¥ (p°,m)a" tdx < &. (7.6)
[0,T] Ja
In particular, there exists C = C(e) such that
b
sup/ p el dr < C. (7.7)
[0,T] Ja

The proof of this lemma follows from the same calculation as that of [4, Proposition 2.1], but
with the new entropy n¥ in place of *. Observe that n¥ is also convex.

We are now in a position to see that the theorem regarding the existence of the approximate
solutions for the spherically symmetric Euler equations in [4, Theorem 2.1] (under the assumption
of the Neumann boundary data for density p) can be extended to the full range of v-law gases,
especially the case: v > 3. We observe that it suffices to show only Lemma 2.3 in [4], since the rest
of the argument follows as in the case: v € (1, 3] considered already in [4]. We therefore provide

a sketch of the proof of this result, highlighting the places where this new estimate is used.

We aim to show for the whole range v € (1,00) that there exists C, depending on £ > 0, such

that the approximate solutions (p°, m®) satisfy

b
sup / (652 + [m2]?) da + / (I6al? + S, ?) dudt < C.
[O,T] a QT
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Proceeding as in the proof of [4, Lemma 2.3] and Lemma 3.4, we obtain

1

b
3 | Upsta) o+ pmatt,2)?) do e [ (ol + Ima?) dodr

1t n—1
:5/ (|p0,z|2+|m0,x|2) dz+/ (mzpquTmpm) dszJr/ (pu2+p5)zmmd:cd7

t t

+(n— 1)/ (ép@ﬂmm - %pmpm) dxdr — (n — 1)5/ (%)zmm dz dr.

t
We here give only the estimate of the critical term (pu?),maze = U2 prMas + 2pUtyM 4. Following
[4, Lemma 2.3], we obtain that, for A > 0 to be chosen later,

t b
/ |u2pmmm| drdr < A/ |mm|2 dx dr + C’A/ (Hu(T, )||‘ioo / hg (p))pz (T, x)|2 dz) dr.
Q: 0 a

t

From the maximum principle lemma, [4, Lemma 2.2],
2 max 1, 1
lu(r = < C(1+ el ),

which yields

/ |2 pemige| da dr
t

t b
<A /Q masPdedr+ Ca [ (04 sup (s, )32507) [ hi(olpa(ro) do) dr.
t 0

s€[0,7] a
Now we can use the improved estimate (7.7) and the argument of [4, Lemma 2.1], and also compare
with Lemma 3.2 to show that

b
16 oy < (14 [ o)
We therefore obtain
/ |u? ppige| da dr

<A | |mgg P dedr + CA/ 1 + sup / |pa(s,2)|? dm)/ R (p)|pz (T, )2 dm) dr
Qt s€[0,t]
for the whole range v € (1, 00), especially including v > 3.
Arguing similarly for the other terms, we conclude the result.
This result now allows us to conclude the argument of Theorem 2.1 in [4] as it is done there.
As remarked previously, this is sufficient to apply the results of §3 in [4] to conclude Theorem 7.1,

and hence Theorem 2.2.
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